(x^2-180,000)/x^2=0

Simple and best practice solution for (x^2-180,000)/x^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-180,000)/x^2=0 equation:



(x^2-180.000)/x^2=0
Domain of the equation: x^2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
(x^2-180.000)=0
We get rid of parentheses
x^2-180.000=0
We add all the numbers together, and all the variables
x^2-180=0
a = 1; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·1·(-180)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*1}=\frac{0-12\sqrt{5}}{2} =-\frac{12\sqrt{5}}{2} =-6\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*1}=\frac{0+12\sqrt{5}}{2} =\frac{12\sqrt{5}}{2} =6\sqrt{5} $

See similar equations:

| H^2-6h+5=0 | | -2x=-2/5 | | 4/5+d=2/3 | | 10x-(5x-2)=27 | | x-x/2.5=178 | | 8x-45=291 | | ​41=-6-11z | | X-13=10x | | 36=10-x | | 4x-7=3-3(5x-3)=60 | | J^2-36j=0 | | 99=x-11x | | 17^-4x=2^x+8 | | 8x+1=4x+.5 | | X-20=100x | | 8x-4=-5x+61 | | x-x/2.5=300 | | 48+x=96x | | ((25x−2548)(−5)=x6−14(x+6) | | 6(5+w)=5(4+w) | | 125=x+24x | | -35x+34x=-9 | | 6x+14+2x+30=3(x+8) | | -9b-36=11-(b-41) | | X+18=30x= | | y^2+2y=41.25 | | 16x+4-13x=19+18 | | a^2-23a=0 | | -3(3-3n)=4(2n+10) | | 8m+3=4m+14 | | 4(3x-2)=221 | | x^2=1.8 |

Equations solver categories